Code: CS1T5, IT1T5, IT2T3RS

I B.Tech - I Semester - Regular / Supplementary Examinations December - 2016

BASIC ELECTRICAL ENGINEERING

(Common for CSE \& IT)
Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \times 2=22 \mathrm{M}$
1.
a) State Ohm's law.
b) What will be the resistance of individual elements which when connected in delta has 3Ω each is transformed into star connection?
c) State Kirchhoff's current law.
d) Define flux density.
e) What is the difference between series aiding and opposition in magnetic coils?
f) Write the formula for finding r.m.s value.
g) What is a phasor?
h) Write the formula for generated emf of a DC generator.
i) Write the formula for slip.
j) Power remains constant from primary to secondary in a transformer. Justify.
k) Which current measuring instrument is to be used for DC systems?
PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Calculate the voltage across 6Ω resistor.

b) Derive the conversion from star to delta connection. 8 M
3. a) Briefly discuss Faraday's laws of electromagnetic induction discuss statically and dynamically induced EMFs. 8 M
b) Obtain an expression for equivalent inductance when two coils are connected in 8 M
i) series aiding
ii) series opposing
4. a) Calculate the rms value and average value of an alternating sinusoidal voltage. Also obtain the expression form factor and peak factor.
b) Obtain the individual power of a series $\mathrm{R}, \mathrm{L}, \mathrm{C}$ circuit connected to an ac voltage source of peak $230 \mathrm{~V}, 50 \mathrm{~Hz}$ where $\mathrm{R}=100 \Omega, \mathrm{~L}=2 \mathrm{mH}, \mathrm{C}=10 \mu \mathrm{~F}$.
5. a) Explain the need for starters in DC machines.
b) Discuss about the rotating magnetic field in a three phase induction machine.
6. a) Explain the principle and derive E.M.F Equation of a Transformer.
b) Briefly discuss about operating principle of PMMC meter. 8 M

